Abstract

For applications of clustering algorithms, a key technique is to handle complicatedly distributed clusters effectively and efficiently. On the basis of analysis and research of traditional clustering algorithms, a clustering algorithm based on density and adaptive density-reachable is presented in this paper. Experimental results show that the algorithm can handle clusters of arbitrary shapes, sizes and densities. At the same time, the algorithm can evidently reduce time and space complexity as compared with other density-based algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.