Abstract

As the core component of the rotating packing bed, packing is a place for efficient gas–liquid mixing and mass transfer. In this paper, a 3D structured packing composed of a mesh structure and a support structure was designed. The mesh structure is a ring-shaped mesh surrounded by triangular meshes, which is stable in structure and can achieve a high degree of dispersion and aggregation of the liquid phase. The support structure is composed of ring-shaped structural units arranged at a certain angle along the axial direction, which can enhance the turbulence of the airflow while constructing regular gas-phase channels. Circumferential steel meshes of different diameters and supporting structures are alternately combined to form 3D packing, which is loaded in a layered cross-flow rotating packing bed. The results show that under the same operating conditions, the mass transfer performance of 3D packing and wire mesh packing are equivalent, and both are better than pall ring packing. Moreover, the pressure drop of 3D packing is significantly lower than that of pall ring packing and wire mesh packing. The design and implementation of packing the development presented in this paper can be used to develop special structured packing for rotating bed, which can further improve the performance of rotating packed bed (RPB).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call