Abstract
In order to study the icing mechanism and anti-icing technology, a small low-speed reflux icing wind tunnel test system was designed and constructed. The refrigeration system and spray system were added to the small reflux low-speed wind tunnel to achieve icing meteorological conditions. In order to verify the feasibility of the test system, the flow field uniformity, temperature stability, and liquid water content distribution of the test section were tested and calibrated. On this basis, the icing tests of an aluminium cylinder, an NACA0018 airfoil, and an S809 airfoil were carried out, and the two-dimensional ice shape obtained by the test was compared with the two-dimensional ice shape obtained by the numerical simulation software. The results show that in the icing conditions and icing time studied, the parameters of the test system are stable, and the experimental ice shape is consistent with the simulated ice shape, which can meet the needs of icing research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.