Abstract

This work is based on the use of waste heat from the temperature difference semiconductor heat exchanger, which can effectively use the waste heat in the exhaust gas, and convert it into electrical energy output through the temperature difference semiconductor material, which can increase engine efficiency and reduce energy consumption; at the same time, it can reduce engine noise and vibration. Extended service life. Due to the strong electromagnetic interference and severe vibration of the generator, there are few remote control devices on the market for the generator. This project uses a 2.4G wireless communication module to control the frequency conversion and speed regulation of the generator. In order to save manpower, start remotely, stop as soon as possible, monitor the operating status of the waste heat temperature difference power generation, reasonably replace the power, start quickly, and reach the electromechanical Integrated product. The realization of intelligent frequency conversion technology can adjust the engine speed according to different electrical appliances, adapt to external loads, realize automatic voltage adjustment, and save fuel consumption. The grid-connected system solves the frequency and phase problems of generators of different models, generations, and manufacturers in parallel, and realizes the re-mixing of old generators, which greatly improves the service life of engines and the best power generation supply, and reduces power generation systems and storage. The configuration cost of the energy unit improves the comprehensive utilization rate of the equipment, has a higher working efficiency, has good economic benefits, and can achieve the purpose of energy saving and emission reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.