Abstract

A study was made of the impact-abrasive wear resistance and impact resistance of grinding bodies cast in a multi-place mold. Three types of chromium cast irons were adopted for the study: low chromium (~1% Cr), medium chromium (up to 5% Cr) and high chromium (up to 20% Cr). The macro- and microstructure of these alloys as a material for cast grinding balls has been studied. Installed an increase in the impact-abrasive wear resistance and impact resistance of such products with an increase in the mass fraction of chromium in cast iron due to the formation of carbides of the (Fe, Cr)3C and especially (Fe, Cr)7C3. Balls were cast in multi-seat chill molds. Cast iron was smelted in a medium-frequency induction furnace, such as IChT, with the main lining on a charge of pure pig iron and steel low-carbon scrap. The temperature of cast iron production was 1500 °C. Liquid cast iron was subjected to alloying with medium carbon ferrochrome. The wear resistance of cast irons was determined on samples cut from balls in the radial direction. The tests were performed in a laboratory mill When tested for impact resistance, the grinding ball received a striking blow of mass 50 kg, falling from a height of 0,5 m. The frequency of application of dynamic loads was 10 beats per minute. Impact resistance was determined by the average number of impacts sustained by the grinding body prior to destruction. Nevertheless, significant excess of the cost high-chromium over low-chromium cast iron forces us to agree with the opinion of the majority of researchers and the practice of production of such metal products. In today's conditions, low-chromium white cast iron is an economically viable material for grinding media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call