Abstract

To solve the problem of low weak signal enhancement performance in the quad-stable system, a new quad-stable potential stochastic resonance (QSR) is proposed. Firstly, under the condition of adiabatic approximation theory, the stationary probability distribution (SPD), the mean first passage time (MFPT), the work (W), and the power spectrum amplification factor (SAF) are derived, and the impacts of system parameters on them are also extensively analyzed. Secondly, numerical simulations are performed to compare QSR with the classical Tri-stable stochastic resonance (CTSR) by using the genetic algorithm (GA) and the fourth-order Runge–Kutta algorithm. It shows that the signal-to-noise ratio (SNR) and mean signal-to-noise increase (MSNRI) of QSR are higher than CTSR, which indicates that QSR has superior noise immunity than CTSR. Finally, the two systems are applied in the detection of real bearing faults. The experimental results show that QSR is superior to CTSR, which provides a better theoretical significance and reference value for practical engineering application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.