Abstract

In crowd simulation, 3D (three-dimensional) character modeling is an important topic since the appropriate character models are helpful to improve the efficiency and realism of crowd simulation. The reconstructed 3D character model based on Kinect has a strong sense of reality and low cost. However, these models are all complex and cannot be applied to large-scale crowd simulation directly. In this paper, we propose a novel personalized human body modeling method for mass crowd simulation based on Kinect. The human modeling process is divided into head modeling and torso modeling, and then they are fused into each other to build a personalized human body model. This method can be divided into two parts: In the first part, a simplified method is presented based on edge curvature and area of error. In addition, to preserve the detail characteristics of model, the way of interactive operation is introduced. In the second part, the automatic fusion for the simplified head model and body model is made by using the improved FCF (fusion control function) fusion method. Finally, a hierarchical database for the personalized human body models is built. The experiment results show that the method proposed in this paper has high efficiency and good robustness in practical applications.

Highlights

  • Traditional 3D human body models usually are captured by the structured light or laser scanner

  • We propose a novel personalized human body modeling method for mass crowd simulation based on Kinect

  • The amount of data of 3D human body model reconstructed with Kinect is large, and the computational complexity is high, which cannot be directly applied to the group simulation and needs to be simplified

Read more

Summary

Introduction

Traditional 3D (three-dimensional) human body models usually are captured by the structured light or laser scanner. We propose a novel personalized human body modeling method for mass crowd simulation based on Kinect.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.