Abstract

Urban ultra-low altitude airspace (ULAA) presents unique challenges for unmanned aerial vehicle (UAV) path planning due to high building density and regulatory constraints. This study analyzes and improves classical path planning algorithms for UAVs in ULAA. Experiments were conducted using A*, RRT, RRT*, and artificial potential field (APF) methods in a simulated environment based on building data from Chengdu City, China. Results show that traditional algorithms struggle in dense obstacle environments, particularly APF due to local minima issues. Enhancements were proposed: a density-aware heuristic for A*, random perturbation for APF, and a hybrid optimization strategy for RRT*. These modifications improved computation time, path length, and obstacle avoidance. The study provides insights into the limitations of classical algorithms and suggests enhancements for more effective UAV path planning in urban environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.