Abstract

Biomechanical microenvironment refers to a variety of mechanical signals in the extracellular mechanical microenvironment, which will change correspondingly with time and space. It plays an important role in histological changes such as cell migration, proliferation, and differentiation, and can further affect wound healing. Wound healing is a complex pathophysiological process, and one of the important factors that affects wound healing is whether the cells can efficiently and quickly migrate to the wound center or not. Previous studies have shown that biomechanical microenvironment can not only induce the directional migration of cells, but also improve the migration rate of cells. In the complex natural environment, cells adopt various migration patterns and are dominated by special patterns such as local myosin contractility and extracellular microenvironment. In addition to overcoming the extracellular barrier, cells also need to interact with neighboring cells and tissue through local physical and mechanical forces and signals to complete migration and thus accelerate wound healing. Therefore, in recent years, scholars at home and abroad have been actively developing biological materials based on improving biomechanical microenvironment in order to further promote cell migration and thus accelerate wound healing. This paper reviews the recent research advances on the role of biomechanical environment in wound healing promotion via the regulating of cell migration and the development of related biomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call