Abstract

Mechanical ventilation has, since its introduction into clinical practice, undergone a major evolution from controlled ventilation to diverse modes of assisted ventilation. Conventional mechanical ventilators depend on flow sensors and pneumatic pressure and controllers to complete the respiratory cycle. Neurally adjusted ventilatory assist (NAVA) is a new form of assisted ventilation in recent years, which monitors the electrical activity of the diaphragm (EAdi) to provide an appropriately level of pressure support. And EAdi is the best available signal to sense central respiratory drive and trigger ventilatory assist. Unlike other ventilation modes, NAVA breathing instructions come from the center. Therefore, NAVA have the synchronous nature of the breaths and the patient-adjusted nature of the support. Compared with traditional ventilation mode, NAVA can efficiently unload respiratory muscles, relieve the risk of ventilator-induced lung injury (VILI), improve patient-ventilator coordination, enhance gas exchange, increase the success rate of weaning, etc. This article reviews the research progress of NAVA in order to provide theoretical guidance for clinical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.