Abstract

Calcium/calmodulin-dependent protein kinases (CaMKs) are important proteins in the calcium signaling cascade response pathway, which can broadly regulate biological functions in vivo. Multifunctional CaMKs play key roles in neural development, including neuronal circuit building, synaptic plasticity establishment, and neurotrophic factor secretion. Currently, four familial proteins, calcium/calmodulin-dependent protein kinase I (CaMKI), calcium/calmodulin-dependent protein kinase II (CaMKII), eukaryotic elongation factor 2 kinase (eEF2K, popularly known as CaMKIII) and calcium/calmodulin-dependent protein kinase IV (CaMKIV), are thought to have been the most extensively studied during neurodevelopment. Although their spatial structures are extremely similar, as well as the initial starting point of activation, both require the activation of calcium and calmodulin (CaM) complexes to be involved in the process, and the phosphorylation sites and modes of each member are different. Furthermore, due to the high structural similarity of CaMKs, their members may play synergistic roles in the regulation of neural development, but different CaMKs also have their own means of regulating neural development. In this review, we first describe the visualized protein structural forms of CaMKI, CaMKII, eEF2K and CaMKIV, and then describe the functions of each kinase in neurodevelopment. After that, we focus on four main mechanisms of neurodevelopmental damage caused by CaMKs: CaMKI/ERK/CREB pathway inhibition leading to dendritic spine structural damage; Ca2+/CaM/CaMKII through induction of mitochondrial kinetic disorders leading to neurodevelopmental damage; CaMKIII/eEF2 hyperphosphorylation affects the establishment of synaptic plasticity; and CaMKIV/JNK/NF-κB through induction of an inflammatory response leading to neurodevelopmental damage. In conclusion, we briefly discuss the pathophysiological significance of aberrant CaMK family expression in neurodevelopmental disorders, as well as the protective effects of conventional CaMKII and CaMKIII antagonists against neurodevelopmental injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.