Abstract

The turnover and stabilization of soil organic carbon are tightly associated with the properties of litter input. Due to the complexity of litter decomposition and the high heterogeneity of forest soils, there are considerable uncertainties about how soil minerals, microorganisms, and environmental factors jointly regulate the transformation and stability of litter-derived soil organic carbon. Here, we present an overview of the "microbial efficiency-matrix stabilization" framework centered on microbial metabolism and organic carbon transformation, as well as the new "microbial carbon pump" and "mineral carbon pump" theories in forest soil organic carbon transformation and stabilization. We specifically highlighted a differential mechanism of "organo-organic interfaces" from the "organo-mineral interfaces" in the effects on soil organic carbon accumulation. We further expounded the transformation processes and stability of soil organic carbon based on the "carbon material cycling" and "energy fluxes", aiming to provide theoretical support for the research on carbon sequestration in forest soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.