Abstract
Electrostatic capacitors based on dielectrics delivering an ultrahigh power density, low loss and high operating voltage, are widely used in energy storage devices for modern electronic and electrical systems. Dielectric polymers, especially ferroelectric polymers, are preferable for an energy storage medium in film capacitors due to their superiority in ultrahigh breakdown strength, low mass density, flexibility, and easy fabrication process. Ferroelectric polymer nanocomposites combining the advantageous properties of ferroelectric polymer matrix and high dielectric constant of ceramic fillers, show great potential applications in achieving superior energy storage performances and have aroused substantial academic interest. This review focuses on the recent research progress of high-energy-density ferroelectric polymer nanocomposites. First, the synthesis and properties of PVDF-based ferroelectric polymers are introduced. Second, the effects of nanofillers, composite structures and interfaces on the dielectric and energy storage properties of ferroelectric polymer nanocomposites are summarized. Third, the underline mechanism of dielectric and energy storage behaviors in ferroelectric nanocomposites are discussed in the aspect of phase-field simulation. Last, the existing challenges and future directions of ferroelectric polymer nanocomposites with high energy storage density are summarized and prospected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.