Abstract

The Fermi level alignment between electrodes and two-dimensional (2D) materials is significant in characterizing sensors based on their reversibility, response time, sensitivity, and long-term stability. Here, we have demonstrated that the modulation of the Schottky barrier height between the interface of metal (Pd/Au) and multilayered ReSe2 nanoflakes caused the change in the transfer curve (Ids-Vbg) of FETs based devices and rectifying characteristics (Ids-Vds) of the Schottky diodes at various hydrogen concentrations at T = 22 °C, fluctuating from 50 to 350 ppm with a response (R%) from 669 to 1198%, respectively. Sensors based on a mono- or bilayer system did not exhibit sensitivity to hydrogen gas owing to metal electrodes diffused into materials. The value of the ideality factor of the Schottky diode-based sensor changed from 4 to 1.6 as the hydrogen concentration was changed from 50 to 900 ppm, while the relative response increased from 0 to 3.5 as the hydrogen concentration was increased from 0 to 900 ppm. This research can offer a real solution for developing cost-effective, faster, and room temperature sensors based on 2D materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call