Abstract

In a pure inverse seesaw framework, achieving a substantial lepton asymmetry that can be converted into the observed baryon asymmetry of the Universe is extremely challenging. The difficulty arises primarily due to two reasons, (i) partial cancellation of the lepton asymmetries associated with the components of a pseudo-Dirac pair, and (ii) strong wash out caused by the inverse decays. In this work we offer two possible resolutions to overcome the above mentioned challenges considering a (3,3) ISS framework. Our first proposal is based on the assumption of a non-standard cosmological era in the pre-BBN epoch, that triggers a faster expansion of the Universe, thereby reducing the washout by several orders of magnitude. The second proposition is an alternative of first which considers a quasi-degenerate mass spectrum for the singlet heavy neutrinos, resulting into a larger order of lepton asymmetry that survives the impact of strong washout to account for the observed BAU. The viable parameters space, as obtained can be tested at present and future Lepton Flavour Violation experiments e.g. MEG and MEG II.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.