Abstract
One of the earliest symptoms of Alzheimer's disease (AD) is getting lost in space or experiencing deficits in spatial navigation, which involve navigation computations as well as learning and memory. We investigated cross brain region interactions supporting memory formation as a potential causative factor of impaired spatial learning and memory in AD. To assess this relationship between AD pathophysiology, brain changes, and behavioral alterations, we used a targeted approach for clearing amyloid beta and tau to rescue functional interactions in the brain. This research strongly connects brain activity patterns during sleep to tau and amyloid accumulation, and will aid in understanding the mechanisms underlying cognitive dysfunction in AD. Furthermore, the results offer insight for improving early identification and treatment strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.