Abstract

Rescue robotics is an important steppingstone in the scientific challenge to create autonomous systems. There is a significant market for rescue robots, which have unique features that allow a fruitful combination of application-oriented developments and basic research. Unlike other markets for advanced robotics systems like service robots, the rescue robotics domain benefits from the fact that there is a human in the loop, which allows a stepwise transition from dumb teleoperated devices to truly autonomous systems. Current teleoperated devices are already very useful in this domain and they benefit from any bit of autonomy added. Human rescue workers are a scarce resource at disaster scenarios. A single operator should, hence, ideally supervise a multitude of robots. We present results from the rescue robots at the International University Bremen in a core area supporting autonomy, i.e., mapping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.