Abstract

IL-2 inducible T-cell kinase (Itk) is a Tec family non-receptor tyrosine kinase involved in signaling downstream of the T-cell receptor. Itk contains an amino-terminal Pleckstrin Homology (PH) domain that binds phosphatidylinositol (3,4,5)-trisphosphate, recruiting Itk to the plasma membrane upon T-cell receptor activation. In addition to phosphoinositide binding, accumulating data suggest that the Itk PH domain likely mediates additional interactions outside of the phosphoinositide ligand binding pocket. The structural basis for additional PH domain functions remains elusive because of the poor recombinant expression and in vitro solution behavior of the Itk PH domain. Here, we determine that the lone α-helix in the Itk PH domain is responsible for the poor solution properties and that mutation of just two residues in the Itk α-helix to the corresponding amino acids in Btk or Tec dramatically improves the soluble recombinant expression and solution behavior of the Itk PH domain. We present this double mutant as a valuable tool to characterize the structure and function of the Itk PH domain. It is also interesting to note that the precise sites of mutation identified in this study appear as somatic mutations associated with cancerous tissue. Collectively, the findings suggest that the two helical residues in the Itk PH domain may serve an important and unique structural role in wild-type Itk that differentiates this tyrosine kinase from its related family members.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.