Abstract

Head and neck cancer is the fifth most common malignancy and accounts for 3% of all new cancer cases each year. Despite relatively high survival rates, the quality of life of these patients is severely compromised because of radiation-induced impairment of salivary gland function and consequential xerostomia (dry mouth syndrome). In this study, a clinically applicable method for the restoration of radiation-impaired salivary gland function using salivary gland stem cell transplantation was developed. Salivary gland cells were isolated from murine submandibular glands and cultured in vitro as salispheres, which contained cells expressing the stem cell markers Sca-1, c-Kit and Musashi-1. In vitro, the cells differentiated into salivary gland duct cells and mucin and amylase producing acinar cells. Stem cell enrichment was performed by flow cytrometric selection using c-Kit as a marker. In vitro, the cells differentiated into amylase producing acinar cells. In vivo, intra-glandular transplantation of a small number of c-Kit+ cells resulted in long-term restoration of salivary gland morphology and function. Moreover, donor-derived stem cells could be isolated from primary recipients, cultured as secondary spheres and after re-transplantation ameliorate radiation damage. Our approach is the first proof for the potential use of stem cell transplantation to functionally rescue salivary gland deficiency.

Highlights

  • Each year,500,000 patients world-wide are treated for head and neck cancer

  • Salivary glands consist of several cell types: acinar cells which are responsible for water and protein secretion, myoepithelial cells surrounding the acini and ducts, and ductal cells which mainly modulate the composition of the saliva

  • More extensive enzymatic treatment using trypsin in addition to the enzymes described resulted in a complete single cell suspension, but we were unable to culture spheres from these single cell suspensions. This suggests that initial cell–cell contact immediately after isolation is necessary for sphere formation

Read more

Summary

Introduction

Each year, ,500,000 patients world-wide are treated for head and neck cancer The majority of these patients are treated with radiotherapy either alone or in combination with other treatment modalities such as surgery and/or chemotherapy, resulting in a 5 year-survival rate of approximately 50% for non-metastatic locally advanced disease. The quality of life of a large proportion of the surviving patients is severely compromised because of radiation-induced impairment of salivary gland function and consequential xerostomia (dry mouth syndrome). As a result these patients suffer from hampered speech, dental problems, difficulties with swallowing and food mastification, impaired taste and nocturnal oral discomfort [1,2]. Regeneration originates from putative stem cells residing in the ductal compartment from which complete recovery is induced within a week after ductal obstruction [5,6,7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call