Abstract
Glial cell line-derived neurotrophic factor (GDNF), a member of the transforming growth factor (TGF)–β superfamily, is one of the most potent neurotrophic factors and promotes survival of many populations of cells. We examined neuroprotective effect of an adenoviral vector encoding glial cell line-derived neurotrophic factor (AxCAhGDNF) on the transient global ischemia. Gerbils received administration of AxCAhGDNF or an adenoviral vector encoding bacterial β-galactosidase gene (AxCALacZ) through the lateral ventricle. Two days later, occluding bilateral common carotid arteries for 5 min using aneurysm clips produced the transient global forebrain ischemia. Animals showed intense immunolabeling for GDNF in ependymal cells on 2, 4 and 7 days after the operation. The exogenous gene transducted by adenovirus in the same cells was detected by in situ hybridization. The treatment with AxCAhGDNF significantly prevented the loss of hippocampal CA1 pyramidal neurons 2 to 7 days after the operation, as compared to AxCALacZ treatment. Also terminal deoxynucleotidyl transferase-mediated dUTP-biotin in situ nick end labeling (TUNEL) staining was markedly reduced in the case with AxCAhGDNF treatment at 7 days after the operation. These results indicated that the adenovirus-mediated gene transfer of GDNF might prevent the delayed neuronal death of stroke and other disorders of the cerebral vasculature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.