Abstract

We have recently shown that rabbit actin can be introduced by electroporation into the Chlamydomonas ida5 mutant lacking conventional actin and rescue its mutant phenotype [Hayashi et al., 2001: Cell Motil. Cytoskeleton 49:146-153]. In this study, we explored the possibility of using electroporation for functional assay of a recombinant protein. The p28 light chain of inner-arm dyneins was expressed in Escherichia coli, purified to homogeneity, and introduced by electroporation into a non-motile mutant ida4oda6 that lacks it. Because this protein was insoluble in the low ionic strength solution used in the previous study, electroporation was performed at physiological ionic strength in the presence of Ca(2+). Most cells shed their flagella after electroporation. Reflagellation took place within 3 h and up to 30% of the cells became motile, indicating that the introduced p28 retained its functional activity. Fluorescently-labeled p28 was equally effective; in this case fluorescence was observed along the flagella. The presence of Ca(2+) and deflagellation appeared to be important for efficient protein delivery, because a triple mutant with the fa1 mutation deficient in the flagellar shedding mechanism recovered motility only very poorly. Similar results were obtained with other combinations of recombinant proteins and mutants. This study thus demonstrates the feasibility of using electroporation for activity assays of recombinant proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.