Abstract

Congenital heart block (CHB) is a passively acquired autoimmune disease considered to be due to the transfer of maternal autoantibodies, anti-SSA/Ro -SSB/La, to the fetus resulting in atrioventricular (AV) block and sinus bradycardia. We previously established a murine model for CHB where pups born to immunized wild-type (WT) mothers exhibited electrocardiographic abnormalities similar to those seen in CHB and demonstrated inhibition of L-type Ca channels (LTCCs) by maternal antibodies. Here, we hypothesize that overexpression of LTCC should rescue, whereas knockout of LTCC should worsen the electrocardiographic abnormalities in mice. Transgenic (TG) mice were immunized with SSA/Ro and SSB/La antigens. Pups born to immunized WT mothers had significantly greater sinus bradycardia and AV block compared to pups from nonimmunized WT. TG pups overexpressing LTCC had significantly less sinus bradycardia and AV block compared to their non-TG littermates and to pups born to immunized WT mothers. All LTCC knockout pups born to immunized mothers had sinus bradycardia, advanced degree of AV block, and decreased fetal parity. No sinus bradycardia or AV block were manifested in pups from control nonimmunized WT mothers. IgG from mothers with CHB children, but not normal IgG, completely inhibited intracellular Ca transient ([Ca](i)T) amplitude. Cardiac-specific overexpression of LTCC significantly reduced the incidence of AV block and sinus bradycardia in pups exposed to anti-SSA/Ro -SSB/La autoantibodies, whereas exposure of LTCC knockout pups to these autoantibodies significantly worsened the electrocardiographic abnormalities. These findings support the hypothesis that maternal antibodies inhibit LTCC and [Ca](i)T thus contributing to the development of CHB. Altogether, the results are relevant to the development of novel therapies for CHB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.