Abstract

This paper presents a comparative study of genetic algorithms (GA) and ant colony optimization (ACO) applied the online re-optimization of a logistic scheduling problem. This study starts with a literature review of the GA and ACO performance for different benchmark problems. Then, the algorithms are compared on two simulation scenarios: a static and a dynamic environment, where orders are canceled during the scheduling process. In a static optimization environment, both methods perform equally well, but the GA are faster. However, in a dynamic optimization environment, the GA cannot cope with the disturbances unless they re-optimize the whole problem again. On the contrary, the ant colonies are able to find new optimization solutions without re-optimizing the problem, through the inspection of the pheromone matrix. Thus, it can be concluded that the extra time required by the ACO during the optimization process provides information that can be useful to deal with disturbances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.