Abstract
We consider radial Loewner evolution driven by unimodular Lévy processes. We rescale the hulls of the evolution by capacity, and prove that the weak limit of the rescaled hulls exists. We then study a random growth model obtained by driving the Loewner equation with a compound Poisson process. The process involves two real parameters: the intensity of the underlying Poisson process and a localization parameter of the Poisson kernel which determines the jumps. A particular choice of parameters yields a growth process similar to the Hastings–Levitov HL ( 0 ) model. We describe the asymptotic behavior of the hulls with respect to the parameters, showing that growth tends to become localized as the jump parameter increases. We obtain deterministic evolutions in one limiting case, and Loewner evolution driven by a unimodular Cauchy process in another. We show that the Hausdorff dimension of the limiting rescaled hulls is equal to 1. Using a different type of compound Poisson process, where the Poisson kernel is replaced by the heat kernel, as driving function, we recover one case of the aforementioned model and SLE ( κ ) as limits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.