Abstract
Detection of outliers present in noisy images for an accurate fundamental matrix estimation is an important research topic in the field of 3-D computer vision. Although a lot of research is conducted in this domain, not much study has been done in utilizing the robust statistics for successful outlier detection algorithms. This paper proposes to utilize a reprojection residual error-based technique for outlier detection. Given a noisy stereo image pair obtained from a pair of stereo cameras and a set of initial point correspondences between them, reprojection residual error and 3-sigma principle together with robust statistic-based $Q_{n}$ estimator (RES-Q) is proposed to efficiently detect the outliers and estimate the fundamental matrix with superior accuracy. The proposed RES-Q algorithm demonstrates greater precision and lower reprojection residual error than the state-of-the-art techniques. Moreover, in contrast to the assumption of Gaussian noise or symmetric noise model adopted by most previous approaches, the RES-Q is found to be robust for both symmetric and asymmetric random noise assumptions. The proposed algorithm is experimentally tested on both synthetic and real image data sets, and the experiments show that RES-Q is more effective and efficient than the classical outlier detection algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.