Abstract
The switch from 5-exo- to 6-endo-trig selectivity in the radical cyclization of aromatic enynes was probed via the combination of experimental and computational methods. This transformation occurs by kinetic self-sorting of the mixture of four equilibrating radicals via 5-exo-trig cyclization, followed by homoallyl (3-exo-trig/fragmentation) ring expansion to afford the benzylic radical necessary for the final aromatizing C-C bond fragmentation. The interception of the intermediate 5-exo-trig product via β-scission of a properly positioned weak C-S bond provides direct mechanistic evidence for the 5-exo cyclization/ring expansion sequence. The overall cascade uses alkenes as synthetic equivalents of alkynes for the convenient and mild synthesis of Bu3Sn-functionalized naphthalenes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.