Abstract
Recent code reuse attacks are able to circumvent various address space layout randomization (ASLR) techniques by exploiting memory disclosure vulnerabilities. To mitigate sophisticated code reuse attacks, we proposed a light-weight virtual machine, ReRanz, which deployed a novel continuous binary code re-randomization to mitigate memory disclosure oriented attacks. In order to meet security and performance goals, costly code randomization operations were outsourced to a separate process, called the process. The shuffling process continuously flushed the old code and replaced it with a fine-grained randomized code variant. ReRanz repeated the process each time an adversary might obtain the information and upload a payload. Our performance evaluation shows that ReRanz Virtual Machine incurs a very low performance overhead. The security evaluation shows that ReRanz successfully protect the Nginx web server against the Blind-ROP attack.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.