Abstract

Src homology 2 domain–containing leukocyte phosphoprotein of 76 kD (SLP76), an adaptor that plays a critical role in platelet activation in vitro, contains three N-terminal tyrosine residues that are essential for its function. We demonstrate that mice containing complementary tyrosine to phenylalanine mutations in Y145 (Y145F) and Y112 and Y128 (Y112/128F) differentially regulate integrin and collagen receptor signaling. We show that mutation of Y145 leads to severe impairment of glycoprotein VI (GPVI)–mediated responses while preserving outside-in integrin signaling. Platelets from Y112/128F mice, although having mild defects in GPVI signaling, exhibit defective actin reorganization after GPVI or αIIbβ3 engagement. The in vivo consequences of these signaling defects correlate with the mild protection from thrombosis seen in Y112/128F mice and the near complete protection observed in Y145F mice. Using genetic complementation, we further demonstrate that all three phosphorylatable tyrosines are required within the same SLP76 molecule to support platelet activation by GPVI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.