Abstract

BackgroundTrans-translation is catalyzed by ribonucleprotein complexes composed of SmpB protein and transfer-messenger RNA. They release stalled ribosomes from truncated mRNAs and tag defective proteins for proteolytic degradation. Comparative sequence analysis of bacterial tmRNAs provides considerable insights into their secondary structures in which a tRNA-like domain and an mRNA-like region are connected by a variable number of pseudoknots. Progress toward understanding the molecular mechanism of trans-translation is hampered by our limited knowledge about the structure of tmRNA:SmpB complexes.ResultsComplexes consisting of M. tuberculosis tmRNA and E. coli SmpB tag truncated proteins poorly in E. coli. In contrast, the tagging activity of E. coli tmRNA is well supported by M. tuberculosis SmpB that is expressed in E. coli. To investigate this incompatibility, we constructed 12 chimeric tmRNA molecules composed of structural features derived from both E. coli and M. tuberculosis. Our studies demonstrate that replacing the hp5-pk2-pk3-pk4 segment of E. coli tmRNA with the equivalent segment of M. tuberculosis tmRNA has no significant effect on the tagging efficiency of chimeric tmRNAs in the presence of E. coli SmpB. Replacing either helices 2b-2d, the single-stranded part of the ORF, pk1, or residues 79–89 of E. coli tmRNA with the equivalent features of M. tuberculosis tmRNA yields chimeric tmRNAs that are tagged at 68 to 88 percent of what is observed with E. coli tmRNA. Exchanging segments composed of either pk1 and the single-stranded segment upstream of the ORF or helices 2b-2d and pk1 results in markedly impaired tagging activity.ConclusionOur observations demonstrate the existence of functionally important but as yet uncharacterized structural constraints in the segment of tmRNA that connects its TLD to the ORF used for resuming translation. As trans-translation is important for the survival of M. tuberculosis, our work provides a new target for pharmacological intervention against multidrug-resistant tuberculosis.

Highlights

  • Trans-translation is catalyzed by ribonucleprotein complexes composed of SmpB protein and transfer-messenger RNA

  • Our studies demonstrate that replacing the hp5-pk2-pk3-pk4 segment of E. coli transfer-messenger RNA (tmRNA) with the equivalent segment of M. tuberculosis tmRNA produces a chimeric molecule that efficiently tags truncated proteins in the presence of E. coli SmpB

  • Cryo-EM studies of the E. coli tRNA-like domain (TLD):SmpB complex accommodated in the P site suggest that conserved residues 134–140 of SmpB are in close proximity to five conserved tmRNA residues [18]

Read more

Summary

Introduction

Trans-translation is catalyzed by ribonucleprotein complexes composed of SmpB protein and transfer-messenger RNA. They release stalled ribosomes from truncated mRNAs and tag defective proteins for proteolytic degradation. Comparative sequence analysis of bacterial tmRNAs provides considerable insights into their secondary structures in which a tRNA-like domain and an mRNA-like region are connected by a variable number of pseudoknots. Translation of mRNAs that are missing stop codons stalls ribosomes and produces truncated proteins. To recycle stalled ribosomes and degrade defective proteins, bacteria use trans-translation, a quality control process mediated by a ribonucleoprotein particle composed of transfer-messenger RNA (tmRNA) and SmpB [1,2]. EF-Tu binds to the T-arm of the TLD precisely as observed in canonical aminoacyl-tRNAs [7,8]. Essential for trans-translation in M. tuberculosis, protein S1’s contributions to trans-translation in E. coli and other bacteria remain poorly understood [11,12,13,14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call