Abstract

The oncogenic counterpart of thyroid hormone receptor-alpha (TRRalpha), denoted P75gag-v-erbA, has served as a paradigm for the ability of TRs to repress basal levels of transcription. We show here that the retinoid X receptor (RXR), when activated by its specific ligand SR11237, is repressed by both the normal TRalpha and the P75gag-v-erbA. The repression caused by the two proteins is distinct and dependent on both the cell type and the hormone-response element through which RXR acts. In HeLa cells only TR repressed efficiently through the palindromic 2xIR0 element, whereas the proteins were equally efficient in JEG cells. This demonstrates that proteins distinct in the two cell types mediate the repression. RXR-dependent induction via the natural response element of the cellular retinol-binding protein (CRBPII) gene was likewise (> or = 50%) repressed by TR, whereas P75gag-v-erbA did not repress during the same conditions. Furthermore, P75gag-v-erbA and its variants v-erbAtd359 (lacking repressing activity on TR) and v-erbAr12 (a highly active repressor of TR) efficiently repressed induction by a hybrid protein consisting of the DNA- binding domain of Gal4 and the ligand-binding region of RXR. The viral proteins did not, however, associate with RXR unless the two partners were allowed to heterodimerize upon binding to a specific response element, such as the 2xIR0 element or that of the CRBPII gene. In conclusion, we suggest that the efficient repression seen with the the 2xIR0 element is due to heterodimerization of TR or the viral oncoproteins with RXR and a concomitant inhibition of binding of the RXR-specific ligand that results in an inability of RXR to attract a cell type-specific cofactor. In addition, the data suggest that the interaction between RXR and P75gag-v-erbA on the CRBPII element is too weak to inhibit RXR from binding a ligand and therefore also to repress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.