Abstract
Intercellular cell adhesion molecule-1 (ICAM-1) is a cell-surface glycoprotein capable of eliciting bidirectional signals that activate signalling pathways in leukocytes, endothelial, and smooth muscle cells. Gene transfer of xenogeneic ICAM-1 into EL-4 lymphomas causes complete tumor rejection; however, it is unknown whether the mechanism responsible involves the "foreignness" of the ICAM-1 transgene, bidirectional signalling events, ICAM-1-receptor interaction, or a combination of the latter. To begin to address this question, we constructed four different therapeutic expression vectors encoding full-length ICAM-1, and forms in which the N-terminal ligand-binding domains and cytoplasmic tail had been deleted. Mouse EL-4 tumors (0.5 cm in diameter), which actively suppress the immune response, were significantly inhibited in their growth following injection of expression plasmids encoding either full-length xenogenic (human) ICAM-1, or a functional cytoplasmic domain-deficient form that retains ligand-binding activity. Efficacy of ICAM-1-mediated antitumor immunity was significantly augmented by administration of the antivascular drug 5,6-dimethylxanthenone-4-acetic acid (DMXAA), which suppressed blood supply to the tumor, leading to enhanced leukocyte infiltration, and complete tumor eradication in a gene dosage and CD8(+) T cell and NK cell-dependent fashion. Generation of potent cytotoxic T cell (CTL)-mediated antitumor immunity was reflected by ICAM-1-facilitated apoptosis of tumor cells in situ. In contrast, nonfunctional ICAM-1 lacking the N-terminal ligand-binding Ig domain failed to generate antitumor immunity, even in the presence of DMXAA. These studies demonstrate that ICAM-1-stimulated antitumor immunity can overcome tumor-mediated immunosuppression, particularly when employed in combination with an attack on the tumor vasculature. The ligand-binding domain of ICAM-1 is essential for generating antitumor immunity, whereas the cytoplasmic domain and bidirectional activation of tumor signalling pathways are not essential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.