Abstract

A new concept of feature size range of a roughness profile is introduced in the paper. It is shown that this feature size range plays an important role in estimating the fractal dimension,D, accurately using the divider method. Discussions are given to indicate the difficulty of using both the divider and the box methods in estimatingD accurately for self-affine profiles. The line scaling method's capability in quantifying roughness of natural rock joint profiles, which may be self-affine, is explored. Fractional Brownian profiles (self-affine profiles) with and without global trends were generated using known values ofD, input standard deviation, σ, and global trend angles. For different values of the input parameter of the line scaling method (step sizea 0),D and another associated fractal parameterC were calculated for the aforementioned profiles. Suitable ranges fora 0 were estimated to obtain computedD within ±10% of theD used for the generation. Minimum and maximum feature sizes of the profiles were defined and calculated. The feature size range was found to increase with increasingD and σ, in addition to being dependent on the total horizontal length of the profile and the total number of data points in the profile. The suitable range fora 0 was found to depend on bothD and σ, and then, in turn, on the feature size range, indicating the importance of calculating feature size range for roughness profiles to obtain accurate estimates for the fractal parameters. Procedures are given to estimate the suitablea 0 range for a given natural rock joint profile to use with the line scaling method in estimating fractal parameters within ±10% error. Results indicate the importance of removal of global trends of roughness profiles to obtain accurate estimates for the fractal parameters. The parametersC andD are recommended to use with the line scaling method in quantifying stationary roughness. In addition, one or more parameters should be used to quantify the non-stationary part of roughness, if it exists. The estimatedC was found to depend on bothD and σ and seems to have potential to capture the scale effect of roughness profiles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call