Abstract

We numerically study the distribution of entanglement between the Dutch cities of Delft and Eindhoven realized with a processing-node quantum repeater and determine minimal hardware requirements for verifiable blind quantum computation using color centers and trapped ions. Our results are obtained considering restrictions imposed by a real-world fiber grid and using detailed hardware-specific models. By comparing our results to those we would obtain in idealized settings, we show that simplifications lead to a distorted picture of hardware demands, particularly on memory coherence and photon collection. We develop general machinery suitable for studying arbitrary processing-node repeater chains using NetSquid, a discrete-event simulator for quantum networks. This enables us to include time-dependent noise models and simulate repeater protocols with cut-offs, including the required classical control communication. We find minimal hardware requirements by solving an optimization problem using genetic algorithms on a high-performance-computing cluster. Our work provides guidance for further experimental progress, and showcases limitations of studying quantum-repeater requirements in idealized situations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call