Abstract

Appropriate targeting of inner nuclear membrane (INM) proteins is important for nuclear function and architecture. To gain new insights into the mechanism(s) for targeting and/or tethering peripherally associated proteins to the INM, we screened a collection of temperature sensitive S. cerevisiae yeast mutants for defects in INM location of the peripheral protein, Trm1-II-GFP. We uncovered numerous genes encoding components of the Spindle Pole Body (SPB), the yeast centrosome. SPB alterations affect the localization of both an integral (Heh2) and a peripheral INM protein (Trm1-II-GFP), but not a nucleoplasmic protein (Pus1). In wild-type cells Trm1-II-GFP is evenly distributed around the INM, but in SPB mutants, Trm1-II-GFP mislocalizes as a spot(s) near ER-nucleus junctions, perhaps its initial contact site with the nuclear envelope. Employing live cell imaging over time in a microfluidic perfusion system to study protein dynamics, we show that both Trm1-II-GFP INM targeting and maintenance depend upon the SPB. We propose a novel targeting and/or tethering model for a peripherally associated INM protein that combines mechanisms of both integral and soluble nuclear proteins, and describe a role of the SPB in nuclear envelope dynamics that affects this process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.