Abstract

The cyanobacterial ntcA gene encodes a DNA-binding protein that belongs to the Crp family of bacterial transcriptional regulators. In this work, we describe the isolation of an ntcA insertional mutant of the dinitrogen-fixing, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. The Anabaena ntcA mutant was able to use ammonium as a source of nitrogen for growth, but was unable to assimilate atmospheric nitrogen (dinitrogen) or nitrate. Nitrogenase and enzymes of the nitrate reduction system were not synthesized in the ntcA mutant under derepressing conditions, and glutamine synthetase levels were lower in the mutant than in the wild-type strain. In the ntcA mutant, in response to removal of ammonium, accumulation of mRNA of the genes encoding nitrogenase (nifHDK), nitrite reductase (nir, the first gene of the nitrate assimilation operon), and glutamine synthetase (glnA) was not observed. A transcription start point of the Anabaena glnA gene (corresponding to RNAl), that has been shown to be used preferentially after nitrogen step-down, was not used in the ntcA insertional mutant. Heterocyst development (which is necessary for the aerobic fixation of dinitrogen) and induction of hetR (a regulatory gene that is required for heterocyst development) were also impaired in the ntcA mutant. These results showed that the ntcA gene product, NtcA, is required in Anabaena sp. PCC 7120 for the expression of genes encoding proteins involved in the assimilation of nitrogen sources alternative to ammonium including dinitrogen and nitrate, and that the process of heterocyst development is also controlled by NtcA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call