Abstract

The involvement of the TGF-β family in cell growth of bone marrow-derived mast cells (BMMC) cultured with medium containing pokeweed mitogen-stimulated spleen cell-conditioned medium (PWM-SCM) was examined. Doubling time of BMMC from Smad3-null mice was longer than that from wild-type (WT) mice, and the differences tended to be larger with time of culture. Consistent with the results, uptake and reduction of [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium, inner salt; MTS] was lower in Smad3-deficient BMMC. Cell cycle analyses revealed no apparent differences between WT BMMC and Smad3-deficient BMMC, suggesting that longer doubling time in Smad3-deficient BMMC resulted from increased cell death. TGF-β and activin A were supplied by PWM-SCM rather than by self-production by BMMC. Blocking the TGF-β pathway by anti-TGF-β neutralizing antibody or an inhibitor for the type I receptors for ligands including TGF-β and activin, SB431542, inhibited MTS uptake and reduction in WT BMMC, whereas anti-activin A antibody and SB431542 tended to inhibit them in Smad3-deficient BMMC. The present results suggest that TGF-β-induced and Smad3-mediated signaling is essential for maximal cell growth in mast cells, and that the activin pathway may be required for it when mast cell context is modulated by Smad3 depletion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.