Abstract
The Drosophila RNA binding protein RBP9 and its Drosophila and human homologs, ELAV and the Hu family of proteins, respectively, are highly expressed in the nuclei of neuronal cells. However, biochemical studies suggest that the Hu proteins function in the regulation of mRNA stability, which occurs in the cytoplasm. In this paper, we show that RBP9 is expressed not only in the nuclei of neuronal cells but also in the cytoplasm of cystocytes during oogenesis. Despite the predominant expression of RBP9 in nerve cells, mutational analysis revealed a female sterility phenotype rather than neuronal defects for Rbp9 mutants. The female sterility phenotype of the Rbp9 mutants resulted from defects in oogenesis; the lack of Rbp9 activity caused the germarium region of the mutants to be filled with undifferentiated cystocytes. RBP9 appears to stimulate cystocyte differentiation by regulating the expression of bag-of-marbles (bam) mRNA, which encodes a developmental regulator of germ cells. RBP9 protein bound specifically to bam mRNA in vitro, which is required for cystocyte proliferation, and the number of cells that expressed BAM protein was increased 5- to 10-fold in the germarium regions of Rbp9 mutants. These results suggest that RBP9 protein binds to bam mRNA to down regulate BAM protein expression, which is essential for the initiation of cystocyte differentiation into functional egg chambers. In hypomorphic Rbp9 mutants, cystocytes differentiated into egg chambers; however, oocyte determination and positioning were perturbed. Therefore, the concentrated localization of RBP9 protein in the oocyte of the early egg chambers may be required for proper oocyte determination or positioning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.