Abstract

Obligate Wolbachia endobacteria have a reduced genome and retained genes are hypothesized to be crucial for survival. Although intracellular bacteria do not need a stress-bearing peptidoglycan cell wall, Wolbachia encode proteins necessary to synthesize the peptidoglycan precursor lipid II. The activity of the enzymes catalyzing the last two steps of this pathway was previously shown, and Wolbachia are sensitive to inhibition of lipid II synthesis. A puzzling characteristic of Wolbachia is the lack of genes for l-amino acid racemases essential for lipid II synthesis. Transcription analysis showed the expression of a possible alternative racemase metC, and recombinant Wolbachia MetC indeed had racemase activity that may substitute for the absent l-Ala racemase. However, enzymes needed to form mature peptidoglycan are absent and the function of Wolbachia lipid II is unknown. Inhibition of lipid II biosynthesis resulted in enlargement of Wolbachia cells and redistribution of Wolbachia peptidoglycan-associated lipoprotein, demonstrating that lipid II is required for coordinated cell division and may interact with the lipoprotein. We conclude that lipid II is essential for Wolbachia cell division and that this function is potentially conserved in the Gram-negative bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.