Abstract
Two-way active avoidance (2WAA) involves learning Pavlovian (association of a sound cue with a foot shock) and instrumental (shock avoidance) contingencies. To identify regions where dopamine (DA) is involved in mediating 2WAA, we restored DA signaling in specific brain areas of dopamine-deficient (DD) mice by local reactivation of conditionally inactivated Th genes using viral gene therapy. Among all targeted areas--prefrontal cortex (PFC), amygdala, ventral striatum, dorsal striatum, and whole striatum--only restoration of DA signaling to both the whole striatum together with the amygdala enabled DD mice to acquire 2WAA. However, after prolonged overtraining during which DD mice had DA synthesis systemically reconstituted pharmacologically with L-3,4-dihydroxyphenylalanine (L-Dopa), DA signaling in the striatum alone was sufficient to maintain 2WAA, whereas DA signaling in the PFC together with the amygdala was insufficient to maintain 2WAA. Our results indicate that learning 2WAA requires DA signaling in both the amygdala and the entire striatum; however, after sufficient training, DA signaling in the striatum alone can maintain the learned avoidance behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.