Abstract

Interferon alpha (IFN-alpha) inhibits growth, at least in part, through induction of apoptosis. However, the molecular mechanisms underlying IFN-alpha-induced apoptosis are not completely understood. In the present study, we found that IFN-alpha induced a sustained activation of c-Jun N-terminal kinase 1 (JNK1), but not extracellular kinases (ERKs), in Daudi B lymphoma cells, as assessed by Western blotting using phospho-specific antibodies. Several lines of evidence support the notion that the IFN-alpha-induced activation of JNK is responsible for IFN-alpha-induced apoptosis, at least in part, through upregulation of TNF-related apoptosis-inducing ligand (TRAIL). First, pretreatment of Daudi cells with a JNK inhibitor reduced IFN-alpha-induced upregulation of TRAIL and loss of mitochondrial membrane potential (DeltaPsim) and annexin-positive cells, which was assessed by flow cytometry. Second, a dominant-negative form of JNK1 (dnJNK1) also reduced these apoptotic events, while a constitutively active form of JNK1, MKK7-JNK1beta, enhanced them. Finally, treatment with IFN-alpha enhanced the promoter activity of the TRAIL gene, which was partially abrogated by either JNK inhibitor or dnJNK1, while it was moderately enhanced by MKK7-JNK1beta. These findings are useful for understanding molecular mechanisms of IFN-alpha-induced apoptosis and also for development of treatment modalities of some tumors with IFN-alpha.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.