Abstract

One feature of the alpha3-peptide, which has the amino acid sequence of (Leu-Glu-Thr-Leu-Ala-Lys-Ala)(3), that distinguishes it from many other alpha-helix-forming peptides is its ability to form fibrous assemblies that can be observed by transmission electron microscopy. In this study, the effects of Ala-->Gln substitution at the e (5th) or g (7th) position in the above heptad sequence of the alpha3-peptide on the formation of alpha-helix and fibrous assemblies were investigated by circular dichroism spectral measurement and atomic force microscopy. The 5Qalpha3-peptide obtained by Ala-->Gln substitution at the e position of the alpha3-peptide was found to form very short fibrils with long-elliptical shape, whereas the 7Qalpha3-peptide with Gln residues at the g position lost its ability to form such assemblies, in spite of alpha-helix formation in both peptides; the stabilities of both peptides decreased. These results indicate that Ala residues at the g position in the heptad sequence of the alpha3-peptide are key residues for the formation of fibrous assemblies, which may be due to hydrophobic interactions between alpha-helical bundle surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.