Abstract

CD100 belongs to the semaphorin family, several members of which are known to act as repulsive axonal guidance factors during neuronal development. We have previously demonstrated that CD100 plays a crucial role in humoral immunity. In this study, we show that CD100 is also important for cellular immunity through the maturation of dendritic cells (DCs). CD100(-/-) mice fail to develop experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein peptide, because myelin oligodendrocyte glycoprotein-specific T cells are not generated in the absence of CD100. In vitro studies with T cells from OVA-specific TCR-transgenic mice demonstrate that Ag-specific T cells lacking CD100 fail to differentiate into cells producing either IL-4 or IFN-gamma in the presence of APCs and OVA peptide. In addition, DCs from CD100(-/-) mice display poor allostimulatory capabilities and defects in costimulatory molecule expression and IL-12 production. The addition of exogenous soluble rCD100 restores normal functions in CD100(-/-) DCs and further enhances functions of normal DCs. Furthermore, treatment of Ag-pulsed DCs with both soluble CD100 and anti-CD40 before immunization significantly enhances their immunogenicity. This treatment elicits improved T cell priming in vivo, enhancing both primary and memory T cell responses. Collectively, these results demonstrate that CD100, which enhances the maturation of DCs, is essential in the activation and differentiation of Ag-specific T cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.