Abstract

Signaling between embryonic myoblasts involves prostaglandin metabolism, the activation of a membrane receptor and changes in polyphosphatidyl inositol metabolism. Many of these membrane-localized events occur between 33 to 35 h of differentiation, concomitant with a dramatic change in membrane organization, in myoblast aggregates in culture. Since many receptors affect inositol phosphate metabolism by activating a GTP-binding protein (G protein), we asked if there was evidence for such a protein in myogenic signaling. We show that during the period of differentiation in culture when prostaglandin is needed to bind to a transient receptor, a pertussis toxin-sensitive but cholera toxin-insensitive G protein must act. If this activation is blocked, the characteristic change in myoblast cell adhesion and subsequent membrane fusion do not occur. We suggest that a G protein couples the activated prostaglandin receptor and the change in polyphosphatidyl inositol metabolism and that this membrane transduction step is necessary for subsequent membrane differentiation events during myogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.