Abstract
We determined the possible role of large-conductance Ca2+-activated K (BK) channels in regulation of venous tone in small capacitance veins and blood pressure. In rat mesenteric venous smooth muscle cells (MV SMC), BK channel α- and β1-subunits were coexpressed, unitary BK currents were detected, and single-channel currents were sensitive to voltage and [Ca2+]i. Rat MV SMCs displayed Ca sparks and iberiotoxin-sensitive spontaneous transient outward currents. Under resting conditions in vitro, rat MV exhibited nifedipine-sensitive spontaneous oscillatory constrictions. Blockade of BK channels by paxilline and Ca2+ sparks by ryanodine constricted rat MV. Nifedipine caused venodilation and blocked paxilline-induced, KCl-induced (20 mM), and BayK8644-induced contraction. Acute inhibition of BK channels with iberiotoxin in vivo increased blood pressure and reduced venous capacitance, measured as an increase in mean circulatory filling pressure in conscious rats. BK channel α-subunits and L-type Ca2+ channel α1-C subunits are expressed in murine MV. However, these channels are not functional because murine MV lack nifedipine-sensitive basal tone and rhythmic constrictions. Murine MV were also insensitive to paxilline, ryanodine, KCl, and BayK8644, consistent with our previous studies showing that murine MV do not have BK β1-subunits. These data show that not only there are species-dependent properties in ion channel control of venomotor tone but also BK channels are required for rhythmic oscillations in venous tone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.