Abstract

Cdc48, known as p97 or valosin-containing protein (VCP) in mammals, is an abundant AAA-ATPase that is essential for many ubiquitin-dependent processes. One well-documented role for Cdc48 is in facilitating the delivery of ubiquitylated misfolded endoplasmic reticulum proteins to the proteasome for degradation. By contrast, the role for Cdc48 in misfolded protein degradation in the nucleus is unknown. In the budding yeast Saccharomyces cerevisiae, degradation of misfolded proteins in the nucleus is primarily mediated by the nuclear-localized ubiquitin-protein ligase San1, which ubiquitylates misfolded nuclear proteins for proteasomal degradation. Here, we find that, although Cdc48 is involved in the degradation of some San1 substrates, it is not universally required. The difference in the requirement for Cdc48 correlates with the insolubility of the San1 substrate. The more insoluble the substrate, the more its degradation requires Cdc48. Expression of Cdc48-dependent San1 substrates in mutant cdc48 cells results in increased substrate insolubility, larger inclusion formation and reduced cell viability. Substrate ubiquitylation is increased in mutant cdc48 cells, suggesting that Cdc48 functions downstream of San1. Taken together, we propose that Cdc48 acts, in part, to maintain the solubility or reverse the aggregation of insoluble misfolded proteins prior to their proteasomal degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.