Abstract

We compared the thrombin-activated responses in human umbilical vein endothelial cells (HUVECs) and a HUVEC-derived cell line, ECV304. Thrombin induced a 40-50% decrease in transendothelial monolayer electrical resistance and a twofold increase in 125I-albumin permeability in HUVECs, whereas it failed to alter the endothelial barrier function in ECV304 cells. Thrombin produced a brisk intracellular Ca2+ concentration transient and phosphorylation of 20-kDa myosin light chain in HUVECs but not in ECV304 cells. Thrombin-induced phosphoinositide hydrolysis was comparable in ECV304 cells and HUVECs, indicating the activation of thrombin receptors in both cell types. La3+ reduced both the thrombin-induced decrease in endothelial monolayer electrical resistance and the increase in 125I-albumin permeability in HUVECs. Because the absence of Ca2+ signaling could explain the impairment in the permeability response in ECV304 cells, we studied the effect of increasing intracellular Ca2+ concentration in ECV304 cells with thapsigargin. Exposure of ECV304 cells to thapsigargin caused decreased endothelial monolayer electrical resistance and increased 125I-albumin permeability. These results indicate that Ca2+ influx and activation of Ca2+-dependent signaling pathways are important determinants of the thrombin-induced increase in endothelial permeability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call