Abstract

Human liver microsomes and recombinant human P450 have been used as enzyme source in order to better understand the requirement for the optimal rate of omega and (omega;-1)-hydroxylations of fatty acids by cytochromes P450 2E1 and 4A. Three parameters were studied: alkyl chain length, presence and configuration of double bond(s) in the alkyl chain, and involvement of carboxylic function in the fatty acid binding inside the access channel of P450 active site. The total rate of metabolite formation decreased when increasing the alkyl chain length of saturated fatty acids (from C12 to C16), while no hydroxylated metabolite was detected when liver microsomes were incubated with stearic acid. However, unsaturated fatty acids, such as oleic, elaidic and linoleic acids, were omega and (omega;-1)-hydroxylated with an efficiency at least similar to palmitic acid. The (omega;-1)/omega ratio decreased from 2.8 to 1 with lauric, myristic and palmitic acids as substrates, while the reverse was observed for unsaturated C18 fatty acids which are mainly omega-hydroxylated, except for elaidic acid showing a metabolic profile quite similar to those of saturated fatty acids. The double bond configuration did not significantly modify the ability of hydroxylation of fatty acid, while the negatively charged carboxylic group allowed a configuration energetically favourable for omega and (omega;-1)-hydroxylation inside the access channel of active site.

Highlights

  • Human liver microsomes and recombinant human cytochrome P450 or CYP (P450) have been used as enzyme source in order to better understand the requirement for the optimal rate of ␻ and (␻–1)-hydroxylations of fatty acids by cytochromes P450 2E1 and 4A

  • The RP-HPLC profiles of fatty acids incubated with human liver microsomes showed the presence of two major metabolites with retention times corresponding to (␻–1) and ␻-hydroxylated metabolites

  • Two P450 isoforms have been investigated in the hydroxylations of fatty acids, namely CYP2E1 and CYP4A that are shown to be highly regioselective for catalyzing (␻–1) and ␻-hydroxylations, respectively

Read more

Summary

Introduction

Human liver microsomes and recombinant human P450 have been used as enzyme source in order to better understand the requirement for the optimal rate of ␻ and (␻–1)-hydroxylations of fatty acids by cytochromes P450 2E1 and 4A. Three parameters were studied: alkyl chain length, presence and configuration of double bond(s) in the alkyl chain, and involvement of carboxylic function in the fatty acid binding inside the access channel of P450 active site. The (␻–1)/␻ ratio decreased from 2.8 to 1 with lauric, myristic and palmitic acids as substrates, while the reverse was observed for unsaturated C18 fatty acids which are mainly ␻-hydroxylated, except for elaidic acid showing a metabolic profile quite similar to those of saturated fatty acids. The double bond configuration did not significantly modify the ability of hydroxylation of fatty acid, while the negatively charged carboxylic group allowed a configuration energetically favourable for ␻ and (␻–1)-hydroxylation inside the access channel of active site.—Adas, F., J.P. Salaün, F.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.