Abstract
Improvement of the methods for oligonucleotide delivery into cells is necessary for the development of antisense therapy. In the present work, a new strategy for oligonucleotide delivery into cells was tested using cationic peptides as a vector. At first, to understand what structure of the peptide is required for binding with an oligonucleotide, several kinds of alpha-helical and non-alpha-helical peptides containing cationic amino acids were employed. As a result, the amphiphilic alpha-helix peptides were best for binding with the oligonucleotide, and the long chain length and large hydrophobic region in the amphiphilic structure of the peptide were necessary for the binding and forming of aggregates with the oligonucleotide. In the case of non-alpha-helical peptides, no significant binding ability was observed even if their chain lengths and number of cationic amino acid residues were equal to those of the alpha-helical peptides. The remarkable ability of oligonucleotide delivery into COS-7 cells was observed in the alpha-helical peptides with a long chain length and large hydrophobic region in the amphiphilic structure, but was not observed in the non-alpha-helical peptides. It is considered that such alpha-helical peptides could form optimum aggregates with the ODN for uptake into cells. Based on these results, the alpha-helical peptide with a long chain length and large hydrophobic region is applicable as a vector for the delivery of oligonucleotides into cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of peptide science : an official publication of the European Peptide Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.