Abstract

Homeodomain proteins, described 30 years ago1,2, exert essential roles in development as regulators of target gene expression3,4, however the molecular mechanism underlying transcriptional activity of homeodomain factors remains poorly understood. Here, investigation of a developmentally-required POU-homeodomain transcription factor, Pit1/Pou1f1, has revealed that, unexpectedly, binding of Pit1-occupied enhancers5 to a nuclear matrin-3-rich network/architecture6,7 is a key event in effective activation of the Pit1-regulated enhancer/coding gene transcriptional program. Pit1 association with Satb18 and β-catenin is required for this tethering event. A naturally-occurring, dominant negative, point mutation in human Pit1 (R271W), causing combined pituitary hormone deficiency (CPDH)9, results in loss of Pit1 association with β-catenin and Satb1 and therefore the matrin-3-rich network, blocking Pit1-dependent enhancer/coding target gene activation. This defective activation can be rescued by artificial tethering of the mutant R271W Pit1 protein to the matrin-3 network, bypassing the prerequisite association with β-catenin and Satb1 otherwise required. The matrin-3 network-tethered R271W Pit1 mutant, but not the untethered protein, restores Pit1-dependent activation of the enhancers and recruitment of co-activators, exemplified by p300, causing both eRNA transcription and target gene activation. These studies have thus revealed an unanticipated homeodomain factor/β-catenin/Satb1-dependent localization of target gene regulatory enhancer regions to a subnuclear architectural structure that serves as an underlying mechanism by which an enhancer-bound homeodomain factor effectively activates developmental gene transcriptional programs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.