Abstract

Precise and noninvasive theranostic methods to quantify and deplete focal iron are of crucial importance for iron-overload disorders. Here, we developed an indocyanine green (ICG)–based imaging platform to reveal Fe3+ in vitro and in vivo. The high sensitivity and specificity of ICG-Fe interaction facilitated MR images with a marked correlation between T1 signal intensity ratio (T1SIR) changes and Fe3+ concentration in rodent models and humans. On the basis of these findings, a rational design for coordination-driven self-assembly ICG-Lecithin (ICG/Leci) was proposed to determine Fe3+. The enhancement of photoacoustic signal at 890 nm with increasing Fe3+ concentration showed an over 600% higher linear slope than that of T1SIR changes in animal models. ICG/Leci also promoted a 100% increase in iron depletion in the liver compared with deferoxamine. The high MR sensitivity and superior photoacoustic contrast, combined with enhanced iron depletion, demonstrate that ICG/Leci is a promising theranostic agent for simultaneous detection and treatment of iron-overload disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.